![]() |
Centro de Química da Madeira
Campus Universitário da Penteada
Universidade da Madeira
9020-105 Funchal
Portugal
|
Tel:+351 291 705 150 (secretariat)
Tel:+351 291 705 125 (Lab)
Tel:+351 291 705 108 (Office)
Fax: +351 291 705 149 / 249 |
|
|
NMR Equipment
BBO Double Resonance Broadband Probes – Observe Probe (2006) Autosampler SampleXpress Lite (2018) NMR workstation with TOPSPIN (version 3.5.7), ICON NMR, NMRSIM and NMR Guide software running on Windows 10 (2018) |
Unit HomepageBooking | Scheduling |
Main Research Topics
João Rodrigues, Helena Tomás, Pedro Pires & Ruilong Sheng – Materials Group [refs 1-29]
NMR is one of the main tools for comprehensively characterizing the chemical structure of synthetic and natural molecules.
The materials group of CQM carries out studies of interdisciplinary nature in the synthesis and functionalizations of nanomaterials, metallodrugs, and small molecules for biomedical applications [1-29]. Our main goal is to prepare and characterize new types of molecular materials (e.g., dendritic(hyperbranched), hydrogels, carbon dots, and small molecules as sensors, polymeric metal, and non-metal-containing systems) with enhanced electronic and biomedical properties.
Together with other techniques (like MS), liquid NMR is used in our group as a routine tool for the structural characterization of the prepared compounds and to study the impact of nanomaterials in vitro. Behind the common and typical NMR nucleus (1H and 13C), 31P, 19F, and 195Pt are the most important nucleus used by us to identify the presence of ligands/functional groups and platinum on the prepared nanomaterials and study the electronic influence and the geometrical arrange of co-ligands around the metal centers in metallodrugs. Other NMR experiments like DEPT, 2D-COSY, 2D-HSQC, and 2D-HMBC are also very helpful techniques for our research work.
José Câmara, Paula Castilho, Rosa Perestrelo – Natural Products Group [refs 30-37]
The Natural Products group develops research activity in food safety and quality control, chemical composition of aromatic, medicinal, and food plants, and organic chemistry hemi synthesis of bioactive compounds using natural products as raw materials and assessing the biological activity of new compounds. NMR is used to identify and quantify compounds in complex mixtures, such as extracts and essential oils, through the building and querying of specific databases. The group is also interested in the simultaneous determination of organic analytes across fermentation of Madeira wines and the use of 1H-NMR to determine amino acids, organic acids, and polyphenols in wine by 13C- and 1H-NMR. The use of NMR metabolomics to identify and characterize breast cancer metabolites and new drugs is another regular use for our NMR equipment.
Selected Publications
- Martins, I.; Tomás, H.; Lahoz, F.; Rodrigues, J. Engineered Fluorescent Carbon Dots and G4-G6 PAMAM Dendrimer Nanohybrids for Bioimaging and Gene Delivery. Biomacromolecules 2021, 22, 6, 2436-2450. http://dx.doi.org/10.1021/acs.biomac.1c00232
- Camacho, C.; Tomás, H.; Rodrigues, J. Use of Half-Generation PAMAM Dendrimers (G0.5–G3.5) with Carboxylate End-Groups to Improve the DACHPtCl2 and 5-FU Efficacy as Anticancer Drugs. Molecules 2021, 26, 2924-. http://dx.doi.org/10.3390/molecules26102924
- Olim, F.; Neves, A.R.; Vieira, Mariana; Tomás, H.; Sheng, R. Self-Assembly of Cholesterol-Doxorubicin and TPGS into Prodrug-Based Nanoparticles with Enhanced Cellular Uptake and Lysosome-Dependent Pathway in Breast Cancer Cells. J. Lipid Sci. Technol. 2021, 123, 2000337-. http://dx.doi.org/10.1002/ejlt.202000337
- Nunes, N. S. H.; Popović, I.; Abreu, E. A. S.; Maciel, D.; Rodrigues, J. M. C.; Soto, J.; Algarra, M.; Petkovic, M. Detection of Ru potential metallodrug in human urine by MALDI-TOF mass spectrometry: Validation and options to enhance the sensitivity. Talanta 2021, 222, 121551-. http://dx.doi.org/10.1016/j.talanta.2020.121551
- Camacho, C. S.; Urgelles, M.; Tomás, H.; Lahoz, F.; Rodrigues, J. M. C. New insights into the blue intrinsic fluorescence of oxidized PAMAM dendrimers considering their use as bionanomaterials. Mat. Chem. B 2020, 8, 10314-10326. http://dx.doi.org/10.1039/D0TB01871F
- Algarra, M.; Órfãos, L.; Alves, C. S.; Moreno-Tost, R.; Pino-González, M. S.; Jiménez-Jiménez, J.; Rodríguez-Castellón, E.; Eliche-Quesada, D.; Castro, E.; Luque, R. Sustainable Production of Carbon Nanoparticles from Olive Pit Biomass: Understanding Proton Transfer in the Excited State on Carbon Dots. ACS Sustain. Chem. Eng. 2019, 7, 10493-10500. http://dx.doi.org/10.1021/acssuschemeng.9b00969
- Maciel, D.; Guerrero-Beltrán, C.; Ceña-Díez, R.; Tomás, H.; Muñoz-Fernández, M. A.; Rodrigues, J. M. C. New anionic poly(alkylideneamine) dendrimers as microbicide agents against HIV-1 infection. Nanoscale 2019, 11, 9679-9690. http://dx.doi.org/10.1039/C9NR00303G
- Santos, S. D.; Xavier, M.; Leite, D. M.; Moreira, D. A.; Custódio, B.; Torrado, M.; Castro, R.; Leiro, V.; Rodrigues, J. M. C.; Tomás, H.; Pêgo, A. P. PAMAM dendrimers: blood-brain barrier transport and neuronal uptake after focal brain ischemia. Control. Release 2018, 291, 65-79. http://dx.doi.org/10.1016/j.jconrel.2018.10.006
- Gouveia, M.; Figueira, J.; Jardim, M. G.; Castro, R.; Tomás, H.; Rissanen, K.; Rodrigues, J. M. C. Poly(alkylidenimine) Dendrimers Functionalized with the Organometallic Moiety [Ru(η5-C5H5)(PPh3)2]+ as Promising Drugs Against Cisplatin-Resistant Cancer Cells and Human Mesenchymal Stem Cells. Molecules 2018, 23, 1471-1471. http://dx.doi.org/10.3390/molecules23061471
- Camacho, C. S.; Mesquita, J. C.; Rodrigues, J. M. C. Electrodeposition of polyaniline on self-assembled monolayers on graphite for the voltammetric detection of iron(II). Chem. Phys. 2016, 184, 261-268. http://dx.doi.org/10.1016/j.matchemphys.2016.09.050
- Figueira, J.; Czardybon, W.; Mesquita, J. C.; Rodrigues, J. M. C.; Lahoz, F.; Russo, L.; Valkonen, A.; Rissanen, K. Synthesis, characterization and solid-state photoluminescence studies of six alkoxy phenylene ethynylene dinuclear palladium(II) rods. Dalton Trans. 2015, 44, 4003-4015 http://dx.doi.org/10.1039/C4DT00493K
- Kong, L.; Alves, C. S.; Hou, W.; Qiu, J.; Möhwald, H.; Tomás, H.; Shi, X. RGD Peptide-Modified Dendrimer-Entrapped Gold Nanoparticles Enable Highly Efficient and Specific Gene Delivery to Stem Cells. ACS Appl. Mater. Interfaces 2015, 7, 4833-4843. http://dx.doi.org/10.1021/am508760w
- He, X.; Alves, C. S.; Oliveira, N.; Rodrigues, J. M. C.; Zhu, J.; Bányai, I.; Tomás, H.; Shi, X. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells. Colloid Surf. B-Biointerfaces 2015, 125, 82-89. http://dx.doi.org/10.1016/j.colsurfb.2014.11.004
- Liao, H.; Liu, H.; Li, Y.; Zhang, M.; Tomás, H.; Shen, M.; Shi, X. Antitumor efficacy of doxorubicin encapsulated within PEGylated poly(amidoamine) dendrimers. Appl. Polym. Sci. 2014, 131, 40358-40358. http://dx.doi.org/10.1002/app.40358
- Gonçalves, M.; Maciel, D.; Capelo, D.; Xiao, S.; Sun, W.; Shi, X.; Rodrigues, J. M. C.; Tomás, H.; Li, Y. Dendrimer-Assisted Formation of Fluorescent Nanogels for Drug Delivery and Intracellular Imaging. Biomacromolecules 2014, 15, 492-499. http://dx.doi.org/10.1021/bm401400r
- Gonçalves, M.; Figueira, P.; Maciel, D.; Rodrigues, J. M. C.; Qu, X.; Liu, C.; Tomás, H.; Li, Y. pH-sensitive Laponite®/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomater. 2014, 10, 300-307. http://dx.doi.org/10.1016/j.actbio.2013.09.013
- Gonçalves, M.; Figueira, P.; Maciel, D.; Rodrigues, J. M. C.; Shi, X.; Tomás, H.; Li, Y. Antitumor Efficacy of Doxorubicin-Loaded Laponite/Alginate Hybrid Hydrogels. Biosci. 2014, 14, 110-120. http://dx.doi.org/10.1002/mabi.201300241
- Figueira, J.; Rodrigues, J. M. C.; Valkonen, A. Cis,cis,cis-(Acetato-κ2 O,O′)bis[1,2- bis(diphenylphosphanyl)ethane-κ2 P,P′]ruthenium(II) 0.75-trifluoromethanesulfonate 0.25-chloride. Acta Crystallographica Section E: Structure Reports Online 2013, 69, 226-226. http://dx.doi.org/10.1107/S160053681300737X
- Figueira, J.; Jardim, M. G.; Rodrigues, J. M. C.; Valkonen, A.; Rissanen, K. A convenient route for the preparation of the monohydride catalyst trans-[RuCl(H)(dppe)2] (dppe=Ph2PCH2CH2PPh2): Improved synthesis and crystal structure. Chem. Commun. 2013, 29, 123-127. http://dx.doi.org/10.1016/j.inoche.2013.01.002
- Maiti, S. K.; Jardim, M. G.; Rodrigues, J. M. C.; Rissanen, K.; Campo, J.; Wenseleers, W. Divergent Route to the Preparation of Hybrid Pt–Fe 2,4,6-Tris(4-ethynyl)phenyl-1,3,5-triazine Metallodendrimers for Nonlinear Optics. Organometallics 2013, 32, 406-414. http://dx.doi.org/10.1021/om300745v
- Nouri, A.; Castro, R.; Kairys, V.; Santos, J. L.; Rodrigues, J. M. C.; Li, Y.; Tomás, H. Insight into the role of N,N-dimethylaminoethyl methacrylate (DMAEMA) conjugation onto poly(ethylenimine): cell viability and gene transfection studies. Mater. Sci.-Mater. Med. 2012, 23, 2967-2980. doi: 10.1007/s10856-012-4753-9
- Santos, J. L.; Nouri, A.; Fernandes, T.; Rodrigues, J. M. C.; Tomás, H. Gene delivery using biodegradable polyelectrolyte microcapsules prepared through the layer-by-layer technique. Prog. 2012, 28, 1088-1094. http://dx.doi.org/10.1002/btpr.1576
- Rodrigues J., Jardim M. J., Gouveia M., Tomás H., and Rissanen K. Poly(alkylidenamines) Dendrimers as Scaffolds for the Preparation of Low-generation Ruthenium Based Metallodendrimers. New J. Chem. 2011, 35, 1938-1943.http://dx.doi.org/10.1039/c1nj20364a
- Pandita D., Santos J.L., Rodrigues J., Pêgo A.P., Granja P.L., Balian G., and Tomás H. Gene Delivery into Mesenchymal Stem Cells: A Biomimetic Approach Using RGD Nanoclusters Based on Poly(amidoamine) Dendrimers. Biomacromolecules 2011, 12, 724-481.http://dx.doi.org/10.1021/bm1012647
- Santos J.L., Oliveira H., Pandita D., Rodrigues J., Pêgo A.P., Granja P.L., and Tomás H. Functionalization of Poly(amidoamine) Dendrimers with Hydrophobic Chains for Improved Gene Delivery in Mesenchymal Stem Cells. Control. Release 2010, 144, 55-64. http://dx.doi.org/10.1016/j.jconrel.2010.01.034
- Jardim M.G., Rissanen K., and Rodrigues J. Preparation and Characterization of Novel Poly(alkyliden imine) Nitrile Ruthenium Metallodendrimers. J. Inorg. Chem. 2010, 11, 1729-1735. http://dx.doi.org/10.1002/ejic.200901187
- Ornelas C., Ruiz J., Rodrigues J, and Astruc D. Visible-light Photolytic Synthesis of Multinuclear and Dendritic Iron-Nitrile Cationic Complexes. Chem. 2008, 47, 4421-4428. dx.doi.org/10.1021/ic800100k
- Vertlib V., Figueira J., Mesquita J., Rodrigues J., Nättinen K., and Rissanen, K. A Trinuclear Aqua Cyano-bridged Ruthenium Complex [{(η5-C5H5) (PPh3)2Ru(μ-CN)}2RuCl2(PPh3)(H2O)][PF6]: Synthesis, Characterization and Crystal Structure. J. Inorg. Chem. 2007, 13, 1920 – 1924. http://dx.doi.org/10.1002/ejic.2006010503
- Méry D., Plault L., Ornelas C., Ruiz, J., Nlate, S., Astruc, D., Blais, J.-C., Rodrigues J., Cordier, S., Kirakci K., and Perrin, C. From Simple Monopyridine Clusters [Mo6Br13(Py-R)6][n-Bu4N] and Hexapyridine Clusters [Mo6X8(Py-R)6][OSO2CF3]4 (X = Br or I) to Cluster-cored Organometallic Stars, Dendrons and Dendrimers. Chem. 2006, 45, 1156-1167. http://dx.doi.org/10.1021/ic051680f
- Silva, C.L.; Perestrelo, R.; Capelinha, F.; Tomás, H.; Câmara, J.S. An integrative approach based on GC-MS and NMR metabolomics data as a comprehensive strategy to search potential breast cancer biomarkers. Metabolomics. 2021, 17, 72. https://doi.org/10.1007/s11306-021-01823-1
- Gonçalves, J.L., Alves, V.L., Vieira, J.A., Teixeira, M.H., Câmara, J.S. Structure Assignment of Seized Products Containing Cathinone Derivatives Using high resolution analytical Techniques. Metabolites, 2021, 11, 144. https://doi.org/10.3390/metabo11030144
- Alves, V.L., Gonçalves, J.L., Vieira, J.A., Teixeira, M.H., Câmara, J.S. Metabolite Structure Assignment of Seized Products Containing Cathinone Derivatives Using high resolution analytical Techniques. Bioanal. Chem. 2021, 413 2257-2263https://doi.org/10.1007/s00216-021-03199-6
- Silva, L. Catarina; Silva, C. G. S. L.; Luís, C.; Perestrelo, R. M. d. S.; Silva, P.; Tomás, H.; Câmara, J.S. Untargeted Urinary 1H NMR-Based Metabolomic Pattern as a Potential Platform in Breast Cancer Detection Metabolites 2019, 9, 269-. http://dx.doi.org/10.3390/metabo9110269
- Castilho, P. C.; Savluchinske-Feio, S.; Weinhold, T. S.; Gouveia, S. C. Evaluation of the antimicrobial and antioxidant activities of essential oils, extracts and their main components from oregano from Madeira Island, Portugal Food Control 2012, 23, 552-558. http://dx.doi.org/10.1016/j.foodcont.2011.08.031
- Castilho, P., Gouveia, S., Rodrigues, A. I. Quantification of Artemisinin and Camphor in Artemisia Annua Extracts by 1H-NMR. Anal. 2008, 19: 329-334. http://dx.doi.org/10.1002/pca.1053
- Louh G.N., Lannang A.M., Mbazoa C.D., Tangmouo J.G., Komguem J., Castilho P., Ngninzeko F.N., Qamar N., Lontsi D., Choudhary M.I., and Sondengam B.L. Polyanxanthone A, B and C, three xanthones from the wood trunk of Garcinia polyantha Oliv. Phytochemistry 2008, 69, 1013-1017. http://dx.doi.org/10.1016/j.phytochem.2007.10.002
- Ferrari B., Castilho P., Tomi F., Rodrigues A.I., do Ceu Costa M., and Casanova J. Direct identification and quantitative determination of costunolide and dehydrocostuslactone in the fixed oil of Laurus novocanariensis by 13C-NMR spectroscopy. Anal. 2005. 16(2): 104-107. https://doi.org/10.1002/pca.825

