Skip to content

Universidade do Minho – CQ

 

Centro de Química
Universidade do Minho
Campus de Gualtar
4710-057 Braga
Portugal
Tel: + 351 253 604 378 / 80
NMR Equipment
  • Bruker Avance 400 III
Unit Homepage

UMinho – CQ

Booking | Scheduling

emp@quimica.uminho.pt

 

Main Research Topics

Structural characterization of different compounds (heterocyclic compounds with biological activity and for materials, amino acids and peptides with biological activity and as sensors and probes, functionalized Carbon-Based Materials) using 1D- 1H, 13C, 19F and 31P spectra, and 2D NMR techniques including homonuclear 1H-1H and heteronuclear correlations 1H-13C and 1H-15N. Characterization of quadrupolar metallic (27Al, 71Ga) complexes, with relevance for medical imaging diagnostic.

 

Selected Publications

  1. Sousa, R. P. C. L.; Figueira, R. B.; Gomes, B. R.; Ferreira, R. C.; Costa, S. P. G.; Raposo, M. M. M. Hybrid sol-gel matrices doped with colorimetric/fluorimetric imidazole derivatives. Nanomaterials 2021, 11(12), 3401. https://doi.org/10.3390/nano11123401.
  2. Gonçalves, R.; Pina, J.; Costa, S. P. G.; Raposo, M. M. M.; Synthesis and characterization of aryl-substituted BODIPY dyes displaying distinct solvatochromic singlet oxygen photosensitization efficiencies. Dyes Pigments 2021, 196, 109784. https://doi.org/10.1016/j.dyepig.2021.109784
  3. Moreira, ; Santos, P.; Faustino, M. A. F.; Raposo, M. M. M.; Costa, S. P. G.; Moura, N. M. M.; Gomes, A. T. P. C.; Almeida, A.; Neves, M. G. P. M. S. An insight into the synthesis of cationic porphyrin-imidazole derivatives and their photodynamic inactivation efficiency against Escherichia coli. Dyes Pigments 2020, 178, 108330. https://doi.org/10.1016/j.dyepig.2020.108330
  4. Okda, H. E.; Sayed, S. E.; Ferreira, R. C. M.; Otri, I.; Costa, S. P. G.; Raposo, M. M. M., Martínez-Máñez, R. Sancenón, A simple and easy-to-prepare imidazole-based probe for the selective chromofluorogenic recognition of biothiols and Cu(II) in aqueous environments. Dyes Pigments 2019, 162, 303-308. https://doi.org/10.1016/j.dyepig.2018.10.017
  5. Batista, R. M. F.; de Matos Gomes, E.; Raposo, M. M. M.; Costa, S. P. G.; Lopes, P. E.; Almeida, B.; Belsley, M. S. Self-assembling of dipeptide Boc-diphenylalanine nanotubes inside electrospun polymeric fibers with strong piezoelectric response. Nanoscale Adv. 2019,1, 4339-4346. https://doi.org/10.1039/C9NA00464E
  6. Garcia-Amorós, ; Reig. M.; Castro, M. C. R.; Nonell, S.; Vilchez, S.; Esquena, J.; Raposo, M. M. M.; Velasco, D. Adaptable photochromic switches with self-aggregating heterocyclic azo dyes. J. Phys. Chem. C 2019, 123(37), 23140−23144. https://doi.org/10.1021/acs.jpcc.9b07527
  7. Veloso, S.R.S.; Jervis, P.J.; Silva, J.F.G.; Hilliou, L.; Moura, C.; Pereira, D.M.; Coutinho, P.J.G.; Martins, J.A.; Castanheira, E.M.S.; Ferreira, P.M.T. Supramolecular ultra-short carboxybenzyl-protected dehydropeptide-based hydrogels for drug delivery”, Materials Science & Enginneering C, 2021, 122, 111869, https://doi.org/10.1016/j.msec.2021.111869
  8. Veloso, S.R.S.; Martins, J.A.; Hilliou, L.; Amorim, C.O.; Amaral, V.S.; Almeida, B.G.; Jervis, P.J.; Moreira, R.M.; Pereira, D.M.; Coutinho, P.J.G.; Ferreira, P.M.T.; Castanheira, E.M.S. Dehydropeptide-based plasmonic magnetogels: a supramolecular composite nanosystem for multimodal cancer therapy Mater. Chem. B, 2020, 8, 45-64. https://doi.org/10.1039/C9TB01900F
  9. Moreira, R.; Jervis, P. J.; Carvalho, A.; Ferreira, P.M.T.; Martins, J.A.; Valentao, P.; Andrade, P.B.; Pereira, D.M. Biological Evaluation of Naproxen-Dehydrodipeptide Conjugates with Self-Hydrogelation Capacity as Dual LOX/COX Inhibitors” Pharmaceutics, 2020, 12, 122. https://doi.org/10.3390/pharmaceutics12020122
  10. Carvalho, A.; Gallo, J.; Pereira, D.M.; Valentão, P.; Andrade, P.B.; Hilliou, L.; Ferreira, P.M.T. Bañobre-López, M.; Martins, J.A. Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications Nanomaterials, 2019, 9, 541. http://www.dx.doi.org/10.3390/nano9040541
  11. Jervis, P.J.; Hilliou, L.; Pereira, R.B.; Pereira, D.M.; Martins, J.A.; Ferreira, P.M.T. Evaluation of a Model Photo-Caged Dehydropeptide as a Stimuli-Responsive Supramolecular Hydrogel Nanomaterials, 2021, 11, 3, 704. http://dx.doi.org/10.3390/nano11030704
  12. Amorim, C.; Veloso, S.R.S.; Castanheira, E.M.S.; Hilliou, L.; Pereira, R.B.; Pereira, D.M. Martins, J.A.; Jervis, P.J.; Ferreira, P.M.T. Bolaamphiphilic Bis-Dehydropeptide Hydrogels as Potential Drug Release Systems Gels, 2021, 7, 52. http://dx.doi.org/10.3390/gels7020052
  13. 13-Leitão, M. I. P.S., Raju, B. R., Cerqueira, N. M. F. S. A., Sousa, M. J., Gonçalves, M. S. T., Benzo[a]phenoxazinium chlorides: synthesis, antiproliferative activity, in silico studies and evaluation as fluorescent probes, Bioorganic Chemistry 2020, 98, 103730. https://doi.org/10.1016/j.bioorg.2020.103730
  14. Fernandes, M. J. G., Pereira, R. B., Pereira, D. M., Fortes, A. G., Castanheira, E. M. S., Gonçalves, M. S. T., New eugenol derivatives with enhanced insecticidal activity, International Journal of Molecular Sciences 2020, 21, 9257. https://doi.org/10.3390/ijms21239257
  15. Pinto, N. F. S., Fernandes, M. J. G., Pereira, B., Vieira, T. F., Rodrigues, A. R. O., Pereira, D. M., Sousa, S. F., Castanheira, E. M. S., Fortes, A. G., Gonçalves, M. S.T., Amino alcohols from eugenol as potential semisynthetic insecticides: chemical, biological and computational insights, Molecules 2021, 26, 6616. https://doi.org/10.3390/molecules26216616
  16. Rodrigues, J. M.; Cendón, B.; Gulías, M.; Mascareñas, J. L.; Queiroz, M.-J.R.P. Rhodium(III)‐catalyzed formal cycloaddition between thienopyridine/thienopyrazine carboxylic acids and alkynes, triggered by C‐H activation J. Org. Chem. 2021, 3234-3240. https://doi.org/10.1002/ejoc.202100439
  17. Silva, B.R.; Rebelo, R.; Rodrigues, J. M., Xavier, C.P.R.; Vasconcelos, M. H.; Queiroz, M.-J.R.P. Synthesis of Novel Methyl 3-(hetero)arylthieno[3,2-b]pyridine-2-carboxylates and Antitumor Activity Evaluation: Studies In Vitro and In Ovo Grafts of Chick Chorioallantoic Membrane (CAM) with a Triple Negative Breast Cancer Cell Lines, Molecules 2021, 26, 1594 (15pp). https://doi.org/10.3390/molecules26061594
  18. Rodrigues, J. M.; Calhelha, R. C; Nogueira, A.; Ferreira, I. C.F.R.; Barros, L.; Queiroz, M.-J.R.P. Synthesis of Novel Methyl 7-[(Hetero)arylamino]thieno[2,3-b]pyrazine-6-carboxylates and Antitumor Activity Evaluation: Effects in Human Tumor Cells Growth, Cell Cycle Analysis, Apoptosis and Toxicity in Non-Tumor Cells Molecules 2021, 26, 4823 (14pp). https://doi.org/10.3390/molecules26164823
  19. Sousa, C.E.A.; Alves, M. J.; Synthesis of novel sugar derived aziridines, as starting materials giving access to sugar amino acid derivatives” Amino Acids, 2021, 53(7), 1123-1134. https://doi.org/1007/s00726-021-03017-4
  20. Freitas, D. S.; Sousa, C. E. A.; Parente, J.; Drogalin, A.; Gil Fortes, A.; Cerqueira, N. M. F. S. A.; Alves, M. J. “(3S,4R)-3,4-Dihydroxy-N-alkyl-L-homoprolines: Synthesis and Computational Mechanistic Studies” & Biomol. Chem., 2019, 17, 10052–10064. https://doi.org/10.1039/C9OB02141H
  21. Oliveira-Pinto, ; Pontes, O., Lopes, D.; Sampaio-Marques, B.; Costa, M. D.; Carvalho, L.; Gonçalves, C.S.; Costa, B. M.; Maciel, P.; Ludovico, P.; Baltazar, F.; Proença F.; Costa, M. Unravelling the anticancer potential of functionalized chromeno[2,3-b]pyridines for breast cancer treatment Bioorg. Chem., 2020, 100, 103942. https://doi.org/10.1016/j.bioorg.2020.103942
  22. Lopes, D.; Costa, M.; Louçano, J.; Proença, Fernanda “A Convenient One-pot Synthesis of Chromenyl Acrylates and Acrylonitriles” Synlett, 2020, 31(13), 1298-1302. https://doi.org/10.1055/s-0039-1690880